• Online, Self-Paced
Course Description

Explore Seaborn, a Python library used in data science that provides an interface for drawing graphs that convey a lot of information, and are also visually appealing. To take this course, learners should be comfortable programming in Python, have some experience using Seaborn for basic plots and visualizations, and should be familiar with plotting distributions, as well as simple regression plots. You will work with continuous variables to modify plots, and to put it into a context that can be shared. Next, learn how to plot categorical variables by using box plots, violin plots, swarm plots, and FacetGrids (lattice or trellis plotting). You will learn to plot a grid of graphs for each category of your data. Learners will explore Seaborn standard aesthetic configurations, including the color palette, and style elements. Finally, this course teaches learners how to tweak displayed data to convey more information from the graphs.

Learning Objectives

Explore Seaborn, a Python library used in data science that provides an interface for drawing graphs that convey a lot of information, and are also visually appealing. To take this course, learners should be comfortable programming in Python, have some experience using Seaborn for basic plots and visualizations, and should be familiar with plotting distributions, as well as simple regression plots. You will work with continuous variables to modify plots, and to put it into a context that can be shared. Next, learn how to plot categorical variables by using box plots, violin plots, swarm plots, and FacetGrids (lattice or trellis plotting). You will learn to plot a grid of graphs for each category of your data. Learners will explore Seaborn standard aesthetic configurations, including the color palette, and style elements. Finally, this course teaches learners how to tweak displayed data to convey more information from the graphs.

Framework Connections

The materials within this course focus on the NICE Framework Task, Knowledge, and Skill statements identified within the indicated NICE Framework component(s):

Specialty Areas

  • Data Administration