• Online, Self-Paced
Course Description

Explore how to work with machine learning feature selection, general classes of feature selection algorithms, and predictive modeling best practices. In this 12-video course, learners discover how to implement predictive models with scatter plots, boxplots, and crosstabs by using Python. Key concepts examined here include the benefits of feature selection and the general classes of feature selection algorithms; the different types of predictive models that can be implemented and associated features; and how to implement scatterplots and the capability of scatterplots in facilitating predictions. Next, you will learn about Pearson's correlation measures and the possible ranges for Pearson's correlation; learn to recognize the anatomy of a boxplot, a visual representation of the statistical five-number summary of a given data set; and observe how to create and interpret boxplots with Python. Then see how to implement crosstabs to visualize categorical variables; learn statistical concepts that are used for predictive modeling; and learn tree-based methods used to implement regression and classification. Finally, you will learn best practices for implementing predictive modeling.

Learning Objectives

Explore how to work with machine learning feature selection, general classes of feature selection algorithms, and predictive modeling best practices. In this 12-video course, learners discover how to implement predictive models with scatter plots, boxplots, and crosstabs by using Python. Key concepts examined here include the benefits of feature selection and the general classes of feature selection algorithms; the different types of predictive models that can be implemented and associated features; and how to implement scatterplots and the capability of scatterplots in facilitating predictions. Next, you will learn about Pearson's correlation measures and the possible ranges for Pearson's correlation; learn to recognize the anatomy of a boxplot, a visual representation of the statistical five-number summary of a given data set; and observe how to create and interpret boxplots with Python. Then see how to implement crosstabs to visualize categorical variables; learn statistical concepts that are used for predictive modeling; and learn tree-based methods used to implement regression and classification. Finally, you will learn best practices for implementing predictive modeling.

Framework Connections

The materials within this course focus on the NICE Framework Task, Knowledge, and Skill statements identified within the indicated NICE Framework component(s):

Specialty Areas

  • Systems Architecture