• Online, Self-Paced
Course Description

In this 12-video course, learners can explore machine learning problems that can be addressed with hyperparameters, and prominent hyperparameter tuning methods, along with problems associated with hyperparameter optimization. Key concepts covered here include the iterative workflow for machine learning problems, with a focus on essential measures and evaluation protocols; steps to improve performance of neural networks, along with impacts of data set sizes on neural network models and performance estimates; and impact of the size of training data sets on quality of mapping function and estimated performance of a fit neural network model. Next, you will learn the approaches of identifying overfitting scenarios and preventing overfitting by using regularization techniques; learn the impact of bias and variances on machine learning algorithms, and recall the approaches of fixing high bias and high variance in data sets; and see how to trade off bias variance by building and deriving an ideal learning curve by using Python. Finally, learners will observe how to test multiple models and select the right model by using Scikit-learn.

Learning Objectives

{"discover the key concepts covered in this course"}

Framework Connections

The materials within this course focus on the Knowledge Skills and Abilities (KSAs) identified within the Specialty Areas listed below. Click to view Specialty Area details within the interactive National Cybersecurity Workforce Framework.