• Online, Self-Paced
Course Description

Learners can explore the concept of loss function, the different types of Loss function and their impact on neural networks, and the causes of optimization problems, in this 10-video course. Examine alternatives to optimization, the prominent optimizer algorithms and their associated properties, and the concept of learning rates in neural networks for machine learning solutions. Key concepts in this course include learning loss function and listing various types of loss function; recognizing impacts of the different types of loss function on neural networks models; and learning how to calculate loss function and score by using Python. Next, learners will learn to recognize critical causes of optimization problems and essential alternatives to optimization; recall prominent optimizer algorithms, along with their properties that can be applied for optimization; and how to perform comparative optimizer analysis using Keras. Finally, discover the relevance of learning rates in optimization and various approaches of improving learning rates; and learn the approach of finding learning rate by using RMSProp optimizer.

Learning Objectives

{"discover the key concepts covered in this course"}

Framework Connections

The materials within this course focus on the Knowledge Skills and Abilities (KSAs) identified within the Specialty Areas listed below. Click to view Specialty Area details within the interactive National Cybersecurity Workforce Framework.