• Online, Self-Paced
Course Description

In this course, you will explore machine learning predictive modeling and commonly used models like regressions, clustering, and Decision Trees that are applied in Python with the scikit-learn package. Begin this 13-video course with an overview of predictive modeling and recognize its characteristics. You will then use Python and related data analysis libraries including NumPy, Pandas, Matplotlib, and Seaborn, to perform exploratory data analysis. Next, you will examine regression methods, recognizing the key features of Linear and Logistic regressions, then apply both a linear and a logistic regression with Python. Learn about clustering methods, including the key features of hierarchical clustering and K-Means clustering, then learn how to apply hierarchical clustering and K-Means clustering with Python. Examine the key features of Decision Trees and Random Forests, then apply a Decision Tree and a Random Forest with Python. In the concluding exercise, learners will be asked to apply linear regression, logistic regression, hierarchical clustering, Decision Trees, and Random Forests with Python.

Learning Objectives

In this course, you will explore machine learning predictive modeling and commonly used models like regressions, clustering, and Decision Trees that are applied in Python with the scikit-learn package. Begin this 13-video course with an overview of predictive modeling and recognize its characteristics. You will then use Python and related data analysis libraries including NumPy, Pandas, Matplotlib, and Seaborn, to perform exploratory data analysis. Next, you will examine regression methods, recognizing the key features of Linear and Logistic regressions, then apply both a linear and a logistic regression with Python. Learn about clustering methods, including the key features of hierarchical clustering and K-Means clustering, then learn how to apply hierarchical clustering and K-Means clustering with Python. Examine the key features of Decision Trees and Random Forests, then apply a Decision Tree and a Random Forest with Python. In the concluding exercise, learners will be asked to apply linear regression, logistic regression, hierarchical clustering, Decision Trees, and Random Forests with Python.

Framework Connections

The materials within this course focus on the NICE Framework Task, Knowledge, and Skill statements identified within the indicated NICE Framework component(s):

Specialty Areas

  • Systems Architecture

Specialty Areas have been removed from the NICE Framework. With the recent release of the new NICE Framework data, updates to courses are underway. Until this course can be updated, this historical information is provided to give better context as to how it can help you with your cybersecurity goals.

Feedback

If you would like to provide feedback for this course, please e-mail the NICCS SO at NICCS@hq.dhs.gov.