• Classroom
  • Online, Instructor-Led

Learning Objectives

This “skills-centric” course is about 50% hands-on lab and 50% lecture, with extensive practical exercises designed to reinforce fundamental skills, concepts and best practices taught throughout the course. Working in a hands-on learning environment, led by our Computer Vision expert instructor, students will learn about and explore how to Build, train, and serve your own deep neural networks with TensorFlow 2 and Keras Apply modern solutions to a wide range of applications such as object detection and video analysis Run your models on mobile devices and web pages and improve their performance. Create your own neural networks from scratch Classify images with modern architectures including Inception and ResNet Detect and segment objects in images with YOLO, Mask R-CNN, and U-Net Tackle problems faced when developing self-driving cars and facial emotion recognition systems Boost your application’s performance with transfer learning, GANs, and domain adaptation Use recurrent neural networks (RNNs) for video analysis Optimize and deploy your networks on mobile devices and in the browser

Framework Connections

The materials within this course focus on the NICE Framework Task, Knowledge, and Skill statements identified within the indicated NICE Framework component(s):